

SPECIFICATIONS FOR LCD MODULE

Version: A0

CUSTOMER	
MODEL	SC8080002-V01
CUSTOMER APPROVED	

APPROVED BY	CHECKED BY	ORGANIZED BY
ian de	Lr.Yin	Wf.Luo

ADD: 6F. B block of 10 Building Huafeng Technology Park. Fengtang Road

Fuyong town Baoan district Shenzhen Guangdong

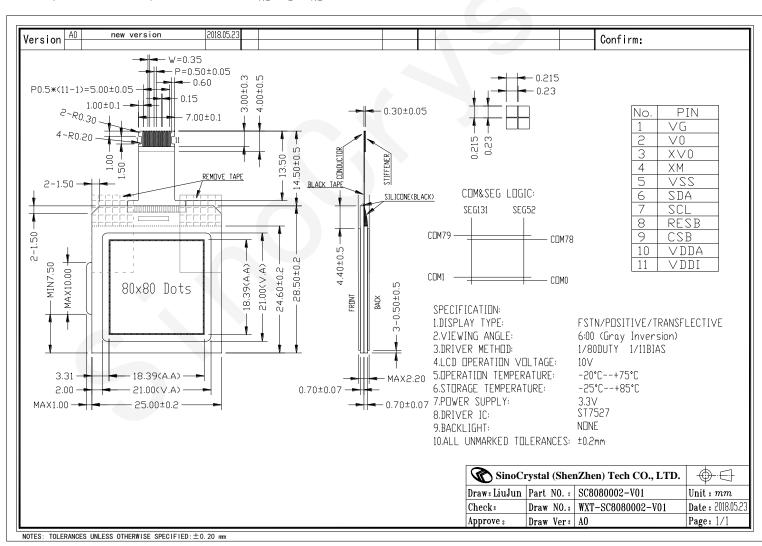
TEL: 0755-81452160

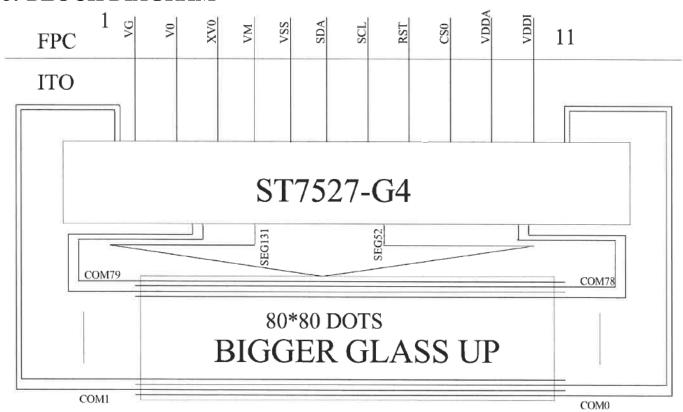
FAX: 0755-81452166

Specification Revision History

Version: A0

Content	Date		
First Issue	2018-05-23		
465			
*			


Version: A0


1. PHYSICAL DATA

ITEM	STANDARD VALUE	UNIT
NUMBER OF GRAPHIC	80×80	Mm
MODULE DIMENSION	25.0×28.5×2.2	Mm
VIEWING AREA	21.00×21.00	Mm
DOT SIZE	0.215×0.215	Mm
DOT PITCH	0.23×0.23	Mm
LCD TYPE	FSTN/POSITIVE/TRANSFLECTIVE	
DUTY	1/80	
VIEWING DIRECTION	6:00(GRAY INVERSION)	o'clock
BACK LIGHT TYPE	NONE	
BACK LIGHT COLOR	NONE	
APPROX. WEIGHT	TBD	G

2. EXTERNAL DIMENSIONS

3. BLOCK DIAGRAM

LCD Module Specification Version: A0 SC8080002-V01

4. INTERFACE PIN CONNECTIONS

Pin No.	Symbol	Type	Description
1	VG	Power	LCD driving voltage for segments.
2	V0	Power	LCD driving voltage for commons at negative frame.
3	XV0	Power	LCD driving voltage for commons at positive frame.
4	XM	Power	LCD driving voltage for commons.
5	VSS	Power	Power Supply Ground.
6	SDA	I	Serial input data.
7	SCL	I	Serial input clock.
8	RESB	т	Reset input pin.
8	KESB	1	When RESB is "L", internal initialization is executed.
9	CSB	I	Chip select input pin.
10	VDDA	Power	Analog power.
11	VDDI	Power	Digital power.

5. ABSOLUTE MAXIMUM RATINGS

(1) Electrical Absolute Ratings

Item	Symbol	Min.	Max.	Unit	Note
Power Supply for Logic	VDDI	-0.3	4	Volt	Note 1
Power Supply for Analog	VDDA	-0.3	4		
Power Supply for LCD	V0-XV0	-0.3	13.5	Volt	
Input Voltage	V _I	-0.3	VDDI+0.3	Volt	
Operating temperature	T_{OP}	-20	75	$^{\circ}$ C	
Storage temperature	T_{ST}	-25	85	$^{\circ}\!$	

Note 1: Operator should be grounded during handling LCM

(2) Environmental Absolute Maximum Ratings

	No	rmal T	empera	ture	Wide Temperature			
Item	Ope	Operating		Storage		Operating		rage
	Min.	Max,	Min.	Max,	Min.	Max,	Min.	Max,
Ambient Temperature	0℃	+50°C	-10°C	+60℃	-20°C	+70°C	-30℃	+80°C
Humidity(without condensation)	Note 2,4		Note 3,5		Not	e 4,5	Note	e 4,6

Note 2 Ta $\leq 50^{\circ}$ C: 80% RH max

Ta>50°C: Absolute humidity must be lower than the humidity of 85%RH at 50°C

Note 3 Ta at -20° C will be <48hrs at 70° C will be <120hrs when humidity is higher than 75%.

Note 4 Background color changes slightly depending on ambient temperature. This phenomenon is reversible.

Note 5 Ta $\leq 70^{\circ}$ C: 75RH max

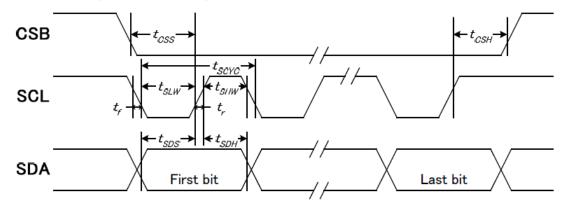
Ta>70°C: absolute humidity must be lower than the humidity of 75%RH at 70°C

Note 6 Ta at -20°C will be <48hrs, at 80°C will be <120hrs when humidity is higher than 75%.

6. ELECTRICAL CHARACTERISTICS

DC Characteristics

(VSS=0V,VDD=3.3V, Ta=25°C)


Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Power Supply for Logic	VDDI		1.7	-	3.6	Volt
Power Supply for Analog	VDDA		2.6	-	3.6	
Lugart Wolfe on	V _{IH}		0.7VDDI	-	VDDI	Volt
Input Voltage	V _{IL}		VSS	-	0.3VDDI	Volt
		$T_a = 0$ °C	-	-	-	
LCM Recommend LCD Module Driving Voltage	$V_{LCD}=V0-XV0$	T _a =25℃	9.7	10	10.3	Volt
	, 5 11 7 0	T _a =50℃	-	- () -	
Power Supply Current for LCM	I_{LCM}	Ta=25℃	-	TBD	TBD	mA

Version: A0

AC Characteristics

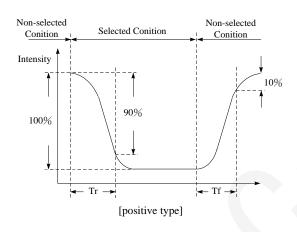
SERIAL INTERFACE (3-Line Interface)

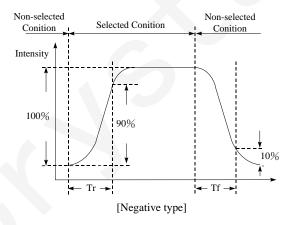
Version: A0

 $(VDD1 = 1.8V \sim 3.3V, Ta = 25^{\circ}C)$

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock period		tSCYC		300	_	
SCL "H" pulse width	SCL	tSHW		80	_	
SCL "L" pulse width		tSLW		80	_	
Data setup time	CDA	tSDS		40	_	ns
Data hold time	SDA	tSDH		30	_	
CSB-SCL time	CCB	tCSS		40	_	
CSB-SCL time	CSB	tCSH		300	_	

Note:

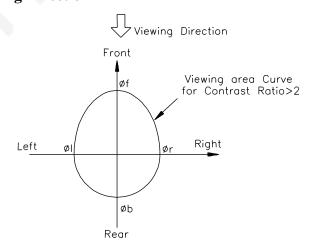

- 1. All timing is specified using 20% and 80% of VDD1 as the standard.
- 2. The input signal rise and fall time (tr, tf) are specified at 15 ns or less.


7. ELECTRO-OPTICAL CHARACTERISTICS

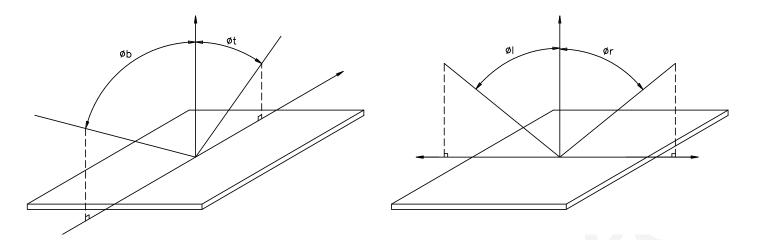
LCD Module Specification

Item	Symbol	Condition	Min.	Typ.	Max.	Unit	note
	$\theta_f(12 \text{ o'clock})$		25	35	-		
Viewing	θ_b (6 o'clock)	WI C > 2	30	36	-	Б	Note 2
angle range	θ_l (9 o'clock)	When $Cr \ge 2$	25	35	-	Degree	Note 3 Note 4
	θ_r (3 o'clock)		25	33	-		
Rise Time	T _r			170		C	Note 1
Fall Time	$T_{ m f}$	V0-XV0=10V Ta=25°C		250		mS	Note 1
Contrast	Cr	14-25	2	5	-		

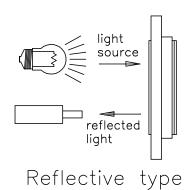
[Note 1] Definition of Response Time (Tr, Tf)

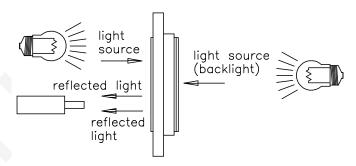


Conditions:


Operating Voltage : Vop Frame Frequency : 64 Hz Viewing Angle(θ , φ): 0°, 0° Driving Wave form : 1/N duty, 1/a bias

[Note 2] Definition of Viewing Direction




[Note 3] Definition of viewing angle

Version: A0

[Note 4] Description of Measuring Equipment

Transflective type

8. OPERATING PRINCIPLES & METHODS

H[1:0] Independent	(Bas	ic Instru	ction)								
INSTRUCTION	Α0	R/W			С	OMMA	ND BYT	Έ			DESCRIPTION
INSTRUCTION	AU	(RWR)	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION
Function Set	0	0	0	0	1	MX	MY	PD	H1	H0	Power down; scan direction; Select instruction table
Write Data	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data to DDRAM
Read Data	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from DDRAM Only for parallel interfaces
Read Status Byte	0	1	PD	0	0	D	E	MX	MY	0	Read status byte

H[1:0]=0,0 (Extens	[1:0]=0,0 (Extension Command 1)												
INCTRUCTION		R/W			С		DESCRIPTION						
INSTRUCTION	A0	(RWR)	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION		
Set Vop Range	0	0	0	0	0	0	0	1	0	PRS	Select Vop range		
END	0	0	0	0	0	0	0	1	1	0	Release read/modify/write		
Read/Modify/Write	0	0	0	0	0	0	0	1	1	1	Column address increment: Read:+0 , Write:+1		
Display Control	0	0	0	0	0	0	1	D	0	Е	Sets display configuration		
SPI3-8bit Data (L)&Start			0	1	0	1	DA3	DA2	DA1	DA0	Set the number of data bytes, Low-bit (8 bit 3-line SPI)		
SPI3-8bit Data (M)			0	1	1	0	DA7	DA6	DA5	DA4	Set the number of data bytes, Middle-bit (8 bit 3-line SPI)		
SPI3-8bit Data (H)			0	1	1	1	0	DA10	DA9	DA8	Set the number of data bytes, High-bit (8 bit 3-line SPI)		
Set Y Address	0	0	0	1	0	0	Y3	Y2	Y1	Y0	Set page address of RAM		
Set X Address (L)	0	0	1	1	1	0	Х3	X2	X1	X0	Set column address of RAM		
Set X Address (H)	0	0	1	1	1	1	X7	X6	X 5	X4	Set column address of RAM		

H[1:0]=0,1 (Extension Command 2)												
INSTRUCTION		R/W (RWR)	COMMAND BYTE							DESCRIPTION		
INSTRUCTION	A0		D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION	
Set Bias	0	0	0	0	0	1	0	0	BS1	BS0	Set internal bias circuit	
Power Control	0	0	0	1	0	0	0	VC	VR	VF	Control power circuit operation	
Set Booster	0	0	0	1	1	0	0	1	B1	В0	Set booster stage	
Set Vop	0	0	1	EV6	EV5	EV4	EV3	EV2	EV1	EV0	Set Vop EV	

H[1:0]=1,0 (Extension Command 3)											
INCTRUCTION	Α0	R/W (RWR)	COMMAND BYTE								DESCRIPTION
INSTRUCTION			D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION
Set Partial Screen Mode	0	0	0	0	0	0	0	1	0	PS	PS=1: Enable partial screen mode.
Partial Display	0	0	0	0	0	0	1	0	0	WS	Set partial screen size
Set Partial Display Part	0	0	0	0	0	1	DP3	DP2	DP1	DP0	Set display area for partial screen mode
Set Start Line	0	0	1	S6	S5	S4	S3	S2	S1	S0	Specify the initial display line to realize vertical scrolling

Version: A0

H[1:0]=1,1 (Extension Command 4)											
INSTRUCTION	A0	R/W (RWR)	COMMAND BYTE								DESCRIPTION
INSTRUCTION			D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION
SRESET	0	0	0	0	0	0	0	0	1	1	Software reset
Frame Frequency Control	0	0	0	0	0	0	1	FR2	FR1	FR0	Frame rate control
N Line Inversion	0	0	0	1	0	NL4	NL3	NL2	NL1	NL0	Sets N line inversion
Reserved Command	0	0	0	0	0	1	0	0	0	Х	Reserved command

Note: 1. Do not use instructions not listed in these tables.

NOTE: For more detail information, please refer to the ST7527's specification.

^{2. &}quot;--" is disable bit. It can be either logic 0 or 1.

Version: A0

9. RELIABILITY

	Environmental Test								
No.	Test Item	Content of Test	Test Condition	Applicable Standard					
1	High temperature storage	Endurance test applying the high storage temperature for a long time.	80 °C 200 hrs						
2	Low temperature storage	Endurance test applying the low storage temperature for a long time.	-30 °C 200 hrs						
3	High temperature operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70 °C 200 hrs						
4	Low temperature operation	Endurance test applying the electric stress under low temperature for a long time.	-20 °C 200 hrs						
5	High temperature / Humidity storage	Endurance test applying the high temperature and high humidity storage for a long time.	70 °C , 90 %RH 96 hrs	MIL-202E-103B JIS-C5023					
6	High temperature / Humidity operation	Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time.	50 °C , 90 %RH 96 hrs	MIL-202E-103B JIS-C5023					
7	Temperature cycle	Endurance test applying the low and high temperature cycle. -10°C \(\sigma \frac{25°C}{5min.} \) \(\frac{60°C}{30min} \) 1 cycle	-10°C / 60°C 10 cycles						
		Mechanical Test							
8	Vibration test	Endurance test applying the vibration during transportation and using.	$10\sim22$ Hz $\rightarrow 1.5$ mmp-p $22\sim500$ Hz $\rightarrow 1.5$ G Total 0.5hrs	MIL-202E-201A JIS-C5025 JIS-C7022-A-10					
9	Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G half sign wave 11 msedc 3 times of each direction	MIL-202E-213B					
10	Atmospheric pressure test	Endurance test applying the atmospheric pressure during transportation by air.	115 mbar 40 hrs	MIL-202E-105C					
		Others	Γ						
11	Static electricity test	Endurance test applying the electric stress to the terminal.	$VS=800V$, $RS=1.5$ k Ω $CS=100$ pF 10 time	MIL-883B-3015.1					

Inspection after test: Inspection after $2\sim4$ hours storage at room temperature, the sample shall be free from defects:

- 1. Air bubble in the LCD.
- 2. Sealleak
- 3. Non-display.
- 4. Missing segments.
- 5. Glass crack.
- 6. Current Idd is twice higher than initial value.

10.QUALITY GUARANTEE

LCD Module Specification

No	Item	Criteria
		(1)round type
		diameter mm(a*) no of defect*
		$a \leq 0.20$ neglect
		$0.20 < a \le 0.35$ 5max
1	inclusions (black spot,	0.35 < a none
1	white spot, dust)	(2)linear type
	•	length mm(l) width mm(W) no. of defect
		na W≤0.03 neglect
		$1 \le 3$ $0.03 < W \le 0.08$ 6
		3 < 1 0.08 < W none
		1.scratch on protective film is permitted.
		2. scratch on polarizer shall be as follow:
		(1)round type
		diameter mm(a*) no of defect
2	scratch	$a \leq 0.15$ neglect
		$0.15 < a \le 0.20$ 2 max
		0.20 < a none
		(2)linear type
		be judged by e1(2) linear type
3	dent	diameter < 1.5mm
4	bubble	not exceeding 0.5mm average diameter is acceptable between glass
4	bubble	and polarizing film
		$(a+b)/2 \le 0.15$ mm
5	nin holo	maximum number: ignored
3	pin hole	$0.15 < (a+b)/2 \le 0.20$ mm
		maximum number:10
6	dot width	design width ±15%
		$(a+b)/2 \le 0.20$ mm
		maximum number: ignored
7	dot defect	$0.20 < (a+b)/2 \le 0.30$ mm
		maximum number:5
		x=width
		diameter spec no of defect
		$a \le 0.50 \text{mm}$ neglect
8	contrast irregularity(spot)	$0.50 < a \le 0.75$
		$0.75 < a \le 1.00$
		1.00 < a none
9	color tone and uniformity	obvious uneven color is not permitted

11.DRIVER POWER CIRCUIT

External Power Components

The recommended external power components need 2 capacitors. It's connection method and capacitance value is show below. The detailed values are determined by the panel size and loading. Refer to Fig 10.

Version: A0

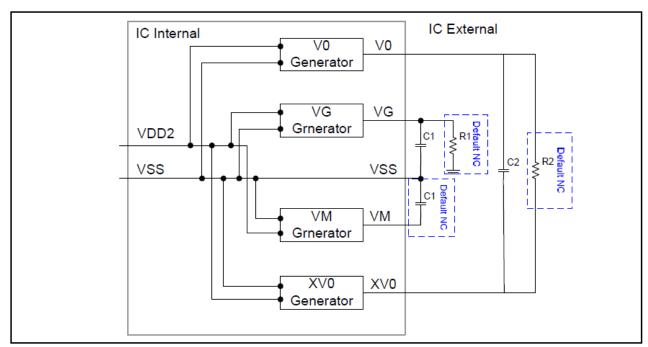


Fig 10 Power Circuit

The referential external component values are listed below.

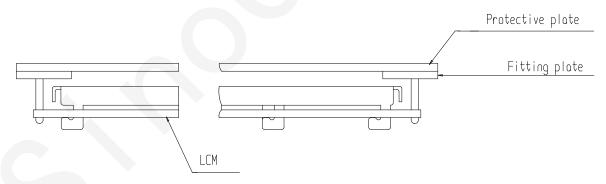
- 1. The resistors are reserved only. Please reserve the space for them on FPC (or system).
- 2. C1=0.1uF~2.2uF (Non-Polar/6.3V, default 1uF)
- 3. C2=0.1uF~2.2uF (Non-Polar/25V, default 1uF)
- 4. R1~R2=47KΩ~100KΩ (default N.C.)

12. USING LCD MODULES

12-1. Liquid Crystal Display Modules

LCD is composed of glass and polarizer. Pay attention to the following items when handling.

(1) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.


Version: A0

- (2) Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.).
- (3) N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances which will be damaged by chemicals such as acetone, toluene, ethanol and isopropylalcohol.
- (4) When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum benzin. Do not scrub hard to avoid damaging the display surface.
- (5) Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
 - (6) Avoid contacting oil and fats.
- (7) Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
 - (8) Do not put or attach anything on the display area to avoid leaving marks on.
- (9) Do not touch the display with bare hands. This will stain the display area and degradate insulation between terminals (some cosmetics are determinated to the polarizers).
- (10) As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

12-2.Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.

(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.

(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ± 0.1 mm.

12-3. Precaution for Handing LCD Modules

Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- (1) Do not alter, modify or change the shape of the tab on the metal frame.
- (2) Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - (3) Do not damage or modify the pattern writing on the printed circuit board.
 - (4) Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.

- (5) Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
 - (6) Do not drop, bend or twist LCM.

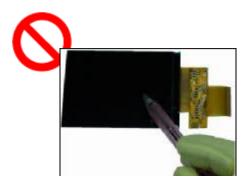
LCM is easy to be damaged. Please note below and be careful for handling. Correct handling:

As above picture, please handle with anti-static gloves around LCM edges.

Incorrect handling:

Please don't touch IC directly.

Please don't stack LCM.


Please don't hold the surface of panel.

Please don't stretch interface of output, such as FPC cable.

Please don't hold the surface of IC.

Please don't operate with sharp stick such as penso

12-4. Electro-Static Discharge Control

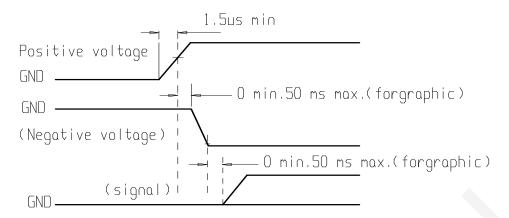
Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

(1) Make certain that you are grounded when handing LCM.

LCD Module Specification

- (2) Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
- (3) When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- (4) When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- (5) As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.
- (6) To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.

12-5. Precaution for soldering to the LCM


- (1) Observe the following when soldering lead wire, connector cable and etc. to the LCM.
 - Soldering iron temperature : $280^{\circ}\text{C} \pm 10^{\circ}\text{C}$.
 - Soldering time: 3-4 sec.
 - Solder: eutectic solder.

If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage dur to flux spatters.

- (2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- (3) When remove the electoluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

12-6.Precautions for Operation

- (1) Viewing angle varies with the change of liquid crystal driving voltage (VO). Adjust VO to show the best contrast.
 - (2) Driving the LCD in the voltage above the limit shortens its life.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- (5) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, it must be used under the relative condition of 40°C, 50% RH.
 - (6) When turning the power on, input each signal after the positive/negative voltage becomes stable.

12-7. Storage

When storing LCDs as spares for some years, the following precaution are necessary.

LCD Module Specification

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped.)
 - (4) Environmental conditions:
 - Do not leave them for more than 168hrs. at 60°C.
 - Should not be left for more than 48hrs, at -20°C.

12-8. Safety

- (1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leakes out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

12-9.Return LCM under warranty

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are :

- Broken LCD glass.
- PCB eyelet's damaged or modified.
- PCB conductors damaged.
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet's, conductors and terminals.